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Abstract. We present a high-statistic systematic study of the overlap correlation function well
below the critical temperature in the three-dimensional Gaussian spin glass. The off-equilibrium
correlation function has been studied confirming the power law behaviour for the dynamical
correlation length. In particular, we have computed the dynamical critical exponentz in a wide range
of temperatures, 0.356 T 6 0.9, obtaining a dependencez(T ) = 6.2/T in very good agreement
with recent experiments. Moreover, we report a study of the violation of the fluctuation–dissipation
theorem for very low temperaturesT = 0.5 and 0.35. All our numerical results avoid a droplet
model interpretation even whenT is as low asT = 0.35.

1. Introduction

The nature of the low-temperature phase of finite-dimensional spin glasses is still a subject of
controversy [1–5].

Recently Bray, Moore, Bokil and Drossel [5, 6] questioned many of the numerical
results obtained with Monte Carlo methods in the three-dimensional Edwards–Anderson (EA)
model [4,7–10].

Inspired by the study of the Migdal–Kadanoff approximation (MKA) of the EA model,
they argued that the numerical results, that were obtained at temperaturesT > 3

4Tc, could be
strongly affected by finite-size effects and that one should go to sizes larger than the crossover
lengthL∗ in order to see the right (droplet) behaviour. They found (in the framework of the
MKA) that the crossover length isL∗ ' 100 forT ' 0.7Tc and that it decreases for lower
temperatures:L∗ 6 10 whenT 6 0.5Tc [5,6] (see also the comment [11]).

This is perhaps the main motivation that pushed us to study the EA model in the very
low temperature region: verify whether the behaviour already found atT ' 0.75Tc persists at
T 6 0.5Tc. In fact, at these temperatures we can simulate (using off-equilibrium techniques)
a system of size larger thanL∗ (in this paper, we will present data for sizesL = 24 and 64).
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The numerical data presented in this paper have been measured in the off-equilibrium
dynamical regime. This way of probing the system properties, apart from being much more
similar to the experimental procedure, does not present the thermalization problems of a
simulation performed at equilibrium, that would lead to insurmountable obstacles at such
low temperatures. The efficiency of this way of measuring has been largely tested in the recent
past [12–16]. Moreover, over the passing years the off-equilibrium dynamics of spin glasses
has received a great deal of attention both from the experimental [17,18] and the analytical [19]
points of view.

Taking the measurements in the off-equilibrium regime we are able to confront the droplet
model (DM) [1] and the mean-field-like theory [4] on two grounds: the off-equilibrium regime
itself and the equilibrium one, that can be obtained in the limit of very large times. We can
take this limit quite safely thanks to the very large time reached in our simulations.

A preliminary analysis based on the data at temperaturesT = 0.7 and 0.35 was reported
in [12]. In this paper we present an extended analysis based on nine different temperatures
obtaining a precise temperature dependence of the dynamical critical exponent in order to have
an accurate comparison with recent experiments.

2. The model and the numerical method

We have simulated the Gaussian Ising spin glass on a three-dimensional cubic lattice of volume
L3 with periodic boundary conditions. The Hamiltonian of the system is

H = −
∑
〈ij〉

σiJijσj . (1)

We denote by〈ij〉 the sum over nearest-neighbour pairs.Jij are Gaussian variables with zero
mean and unit variance.

We focus our attention on the study of the point–point overlap correlation function
computed at distancex and timet

G(x, t) = 1

L3

∑
i

〈σi+xτi+xσiτi〉t (2)

whereσ andτ are two real replicas (systems which evolve with the same disorder) and the
indexi runs over all the points of the lattice. As usual we denote by(· · ·) the average over the
disorder and, in this context,〈(· · ·)〉t is the average over the dynamical process until timet (for
a given realization of the disorder). The two replicas (σ andτ ) evolve with different random
numbers.

The simulation has been performed in a similar way to the experimental procedure: the
system is prepared in a high-temperature configuration (actually the initial configurations
were chosen at random, i.e.T = ∞) and it is suddenly quenched below the (estimated)
critical temperature,Tc = 0.95(3) [8]. Immediately we start taking the measurements, which
obviously depend on time. The equilibrium behaviour is recovered in the large-time limit. As
a dynamical process we have used the standard Metropolis method.

We have simulated four samples (eight systems) of anL = 64 lattice, measuring the
correlation function at timest = 100·2k (with k = 0, . . . ,13) and temperaturesT = 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, and 0.35. In addition, we have simulated 4096 samples of anL = 24 lattice
measuring at timest = 2k (with k = 7, . . . ,19) and at three temperatures:T = 0.7, 0.5 and
0.35.

For the study of the fluctuation–dissipation relation we have usedL = 64 systems and
have simulated them for more than 107 Monte Carlo steps. All the simulations have been
performed with the help of the parallel computer APE100 [20].
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Table 1. Parameters of the point–point correlation function.

T z(T ) δ B−δ α

0.9 6.85(1.0) 1.37(11) 1.02(4) 0.60(7)
0.8 7.5(1.3) 1.37(9) 1.06(4) 0.49(9)
0.7 9.3(0.7) 1.50(5) 1.02(4) 0.53(5)
0.6 10.3(1.2) 1.38(3) 1.09(4) 0.49(16)
0.5 11.7(1.8) 1.43(2) 1.04(4) 0.59(20)
0.4 14.1(2.4) 1.45(4) 0.99(3) 0.60(26)
0.35 19.9(3.8) 1.41(6) 1.03(7) 0.29(32)

3. Results on the correlation function

First, we analyse the correlation functions computed withL = 64 runs. The study of the
numerical data suggests to us the following Ansatz for the time and spatial dependences of the
correlation function [12]:

G(x, t) = const

xα
exp

[
−
(
x

ξ(t)

)δ]
(3)

whereξ(t) is the dynamical correlation length. The numerical data clearly show that the
dynamical correlation length depends on the time following a power lawξ(t) = Bt1/z where
z is the dynamical critical exponent. The exponentsα, δ andz and the amplitudeB could,
in principle, depend on the temperature. However, we obtain (see below) thatα, δ andB are
almost temperature independent, whilez(T ) is inversely proportional toT .

In table 1 we report the results of our fits (always performed using the CERN routine
MINUIT [21]). We remark that, for a given temperature, we have fitted our numerical data to
the Ansatz of equation (3) in two steps. In the first step we fix the distance in the correlation
function and perform the following three-parameters fit in the variablet :

logG(x, t) = A(x)− B(x)t−δ/z. (4)

We have found thatδ/z is independent ofx. In the second step we extract fromA(x) andB(x)
the exponentsα andδ and the amplitudeB using the formulae:A(x) = const− α logx and
B(x) = B−δxδ. We report our final values ofz, δ, B andα in table 1.

The resulting values forz(T ) (see table 1) can be fitted to a power law (using all the
temperatures of table 1) obtaining

z(T ) = 6.4(6)T −0.96(20). (5)

From the previous fit we can guess a simpler law for the dynamical critical exponent
z(T ) = a/T , obtaining†

z(T ) = 6.2(3)

T
. (6)

This kind of behaviour suggests that the low-temperature dynamics in spin glasses is dominated
mainly by activated processes with free-energy barriers diverging logarithmically with the size
of the system.

We can finally write down the dependence of the dynamical correlation length on the time
as well as on the temperature:

ξ(t, T ) ∝ tT /6.2(3) = t0.161(8) T = t0.153(12) T /Tc (7)

† This law was found by Kiskeret al for the±1 three-dimensional spin glass (see [22,23]). Moreover, this law was
guessed for the Gaussian model using numerical data taken at temperaturesT = 0.7 and 0.35 in [12].
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Figure 1. Scaling plot for the correlation functionG(x, t)measured at two very low temperatures,
T = 0.5 and 0.35, and two lattice sizes,L = 24 and 64. It shows that the finite-size effects are
negligible and it also gives reliability to our estimate forξ(t).

where we have assumed that the temperature of the phase transition isTc = 0.95(3) [8].
The agreement of the previous formula with the experiments is very good. We recall that in
experiments [17] it was found the following dependence for the dynamical correlation length

ξ(t, T ) ∝ t0.170 T/Tg (8)

whereTg is the experimental critical temperature (the authors of this result do not quote the
error in the exponent).

A further check of equation (3) would be the collapse of the data (measured at different
times and different temperatures) when plottingG(x, t)xα versusx/t1/z(T ). To this purpose
we use the data from four samples of the 643 runs, together with those measured on 4096
samples of 243 runs. We remark that, in the 243 runs, the volume is nearly 19 times less than
theL = 64 runs but we have computed 1000 times more samples and therefore expect the
errors to be smaller.

In figure 1 we plot the correlation function for two low temperatures (T = 0.5 and 0.35)
using as variablesx/ξ(t) andxαG(x, t) (we have takenα = 0.5, see table 1). In the plots we
use the data from both runs (L = 24 and 64) and they superimpose perfectly. In the insets we
present the same data in a log–linear scale in order to let the reader better evaluate the collapse.
It is clear that the scaling is impressive even at the lowest temperatureT = 0.35. We can also
state that the finite-size effects are negligible for the lattice sizes used.

Scaling arguments tell us that the more general scaling function for the correlation function
is (for largex andt)

G(x, t) ∝ x−αG
(
x

ξ(t)

)
(9)

where the scaling functionG(y) is smooth. Moreover, in the scaling regime,G(y) should not
depend on either the temperature nor on the lattice size. Note that in our Ansatz (3) we have
chosen an exponential function for the scaling function:G(y) ∝ exp(−yδ), and we show that
it fits very well with the data. However, to check that our estimates ofα andξ(t) are correct
we do not need to knowG(y). We can simply plotxαG(x, t) versusx/ξ(t) (as in figure 1) and
check how well the data collapse.

In order to check the temperature independence ofG(y) we show in figure 2 the scaling
function for three different temperatures (T = 0.35, 0.5 and 0.7), together with the exponential
function exp[−y1.42(2)] (see table 1) obtained through the fitting procedure. It is clear that the
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Figure 2. The scaled data forG(x, t) are well described by a temperature-independent scaling
function, that can be very well approximated by our fit.

scaling function is really temperature independent and it can be very well approximated by the
exponential function as we have chosen in our Ansatz.

Another interesting issue is the extrapolation of the correlation function to infinite time.
In this limit we can compare again our numerical results with the predictions of the droplet
model and with that of the RSB theory. In the former the extrapolated correlation function
tends to the valueq2

EA for large distances, whereas the RSB prediction is a pure power law
going asymptotically to zero [24]. Our Ansatz, which describes perfectly the numerical data,
supports the RSB prediction even for the lowest temperatures.

Nevertheless, we have tried to fit our data with a functional dependence compatible with the
droplet model, that is,G(x, t) = G∞(x)G(x/ξ(t)), whereG∞(x) = Ax−α+C. If C = 0, then
the previous formula is exactly our Ansatz (and it implies a breaking of the replica symmetry),
while if C = q2

EA then it would support a droplet picture. Fitting the data to the previous
formula,G∞(x), we have found that at every temperature and even atT = 0.35 (our lowest
temperature), the best value forC is always compatible with zero. At very low temperatures,
i.e. T = 0.35, the Edwards–Anderson order parameter is so close to one (qEA ' 1) that we
can safely distinguish between the two competing theories. In fact, in the droplet-like formula
we have thatG∞(x) is almost constant† and so we should simply fit the data into the scaling
formula of equation (9) without the factorx−α in order to check the correctness of the droplet
model.

In figure 3 we present the data rescaled with the formula suggested by the droplet model
(left plot) and with that implied by RSB (right plot). It is clear that the RSB prediction fits
much better with the numerical data. Note that the data error is sufficiently small to affirm
safely that the data in the left plot have no collapse at all. It should be noted that the maximum
correlation length we have been able to reach is quite small (of the order of three lattice
spacing). Since we cannot thermalize the system at such lowT values we cannot estimate an
equilibrium correlation length (that is infinite in all the phase whereqEA is nonzero), but it is
certainly larger thanξ(t) (qEA is substantially different from zero in thermalized samples up
to L = 16). Still we believe it is relevant that our scaling works so well in all the region we
have been able to analyse (in complete agreement with static simulations, that thermalize deep
in the cold phase lengths up to 16, and are well fitted with a RSB-like scaling behaviour [9]).

† Actually it slowly decreases from 1 toq2
EA ' 1, but for all our purposes it can be considered as a constant.
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Figure 3. The comparison of these two scaling plots clearly shows that the
√
x factor is essential

in order to collapse the correlation function data. The temperature isT = 0.35 and the lattice size
L = 24.

It is also appropriate to note that the droplet theory is a large-scale theory, but just how large
this scale is remains completely unknown (we do not consider that as a strong point of the
droplet approach): in this sense our numerical evidence, as all the numerical evidence one can
hope to obtain, does not represent a complete refutation of the droplet theory. A scaling plot
like the left one presented in figure 3 has been recently presented by Komoriet al in [25] (see
also [26]). We believe that the rather poor collapse of their data (see figure 5 in [25]) is due to
the fact that they neglect the factorx−α in the scaling formula. A much better collapse would
be obtained by plotting

√
x G(x, t) versusx/ξ(t) (see [26]).

4. Fluctuation dissipation relation at very low temperatures

Now, we present the results of the analysis based on the generalization of the fluctuation–
dissipation theorem (FDT) in the out-of-equilibrium regime [27]. In this section we will focus
on the scaling properties of the ageing region and the violation of fluctuation–dissipation at
very low temperatures.

A preliminary analysis was performed in [28] studying the violation of FDT at temperature,
T = 0.7. Here we have simulated different lower temperatures and so, as byproduct, we
can study the scaling properties of the violation of FDT. An analogous analysis, with many
temperatures, was performed in [28] but on the four-dimensional EA model.

For the sake of conciseness, we do not repeat all the formalism and we address the interested
reader to one of the previous publications on the subject [15,27–30]. Here we simply recall the
main formulæ that we use. As usual we define the integrated response to a very small external
field as

χ(t, tw) = lim
h0→0

1

h0

∫ t

tw

R(t, t ′)h(t ′) dt ′ (10)

whereh(t) = h0θ(t− tw) andR(t, t ′) = 1
N

∑
i
∂〈si (t)〉
∂h(t ′) . The autocorrelation function is defined

as

C(t, tw) = 1

N

∑
i

〈si(t)si(tw)〉. (11)
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Figure 4. Response against the autocorrelation function for three different temperatures and lattice
sizeL = 64. Note that in this figure we plotχ(t, tw) versusC(t, tw). The data stay on a single
universal curve when they leave the FDT lines. This curve is clearly non-horizontal and this hints
for a breaking of the replica symmetry in the very low temperature phase of the EA model.

Relating these two functions, in the large-times limit, via

T χ(t, tw) = S(C(t, tw)) (12)

we have that, at the equilibrium, the FDT holds andS(C) = 1 − C, while in the ageing
regime the functionS(C) can be linked to the equilibrium overlap distribution through
P(q) = − ∂2S(C)

∂C2 |C=q [28,31].
Models that, in the frozen phase, do not show any breaking of the replica symmetry, have,

at the equilibrium level, a staticP(q) = δ(q − qEA), which dynamically corresponds to the
absence of response in the ageing regime. This means that, plottingχ(t, tw) versusC(t, tw), we
obtain a horizontal line in the rangeC 6 qEA [30] (in the quasi-equilibrium regime,C > qEA,
and it always holdsT χ = 1− C independently of the model).

In figure 4 we show the results for different temperatures in the usual plotχ(t, tw) versus
C(t, tw). Note that in this plot the FDT line isχ = (1−C)/T and so it is different for different
temperatures. It is quite clear that, even for very large times, the curves are far from being
horizontal when they leave the FDT line. This result gives more evidence in favour of a replica
symmetry breaking in the very low temperature phase of the 3D EA model [28].

We present the data for different temperatures on a single plot in order to make more
evident the fact that the numerical data seem to stay on the same curve once the system enters
into the ageing regime, i.e. when the points leave the FDT line. This kind of behaviour has
been observed in the four-dimensional EA model [28] and it is reminiscent of the mean-field
solution.

Indeed in the SK model, using the Parisi–Toulouse (PAT) hypothesis [32], it can be
shown [28] that

S(C) =
{

1− C for C > qEA(T )

T
√

1− C for C 6 qEA(T ).
(13)

The formula can be easily generalized assuming a generic power law behaviour in the aging
regime:S(C) = TA(1− C)B (the mean-field value for the exponent isB = 1

2).
We use this generalization to fit the data and we obtain very good results. The best-fit

parameters have been estimated from the collapse of the data reported in figure 4 and they are
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in the off-equilibrium regime (right part of the figure) they follow the plotted power lawy = AxB
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A ' 0.7 andB ' 0.41 (to be compared with the mean-field valuesA = 1 andB = 1
2, and

those obtained for the four-dimensional EA modelA ' 0.52 andB ' 0.41 [28]).
In order to show the validity of the fitting formula, we present in figure 5 the collapse of

the scaled data using the variablesx = (1− C)T −φ andy = χT 1−φ , whereφ = 1
1−B = 1.7.

It is easy to see that, if the previous scaling holds, the data should stay on two power laws:
y = x andy = AxB in the quasi-equilibrium and ageing regime, respectively. The two power
laws are reported in figure 5.

Even if we expect a breakdown of the assumed scaling for large values of the scaling
variablex (i.e. the scaled data are no longer described by a power law), we note however that
for a quite large range the collapse is very good and very well approximated by a power law.
Moreover, we remark that the collapse has been obtained adjusting only one parameter.

5. Discussion

We have studied the off-equilibrium dynamics of the three-dimensional Gaussian spin glass
in the very low temperature phase. In particular, we have studied the scaling properties of
the dynamical overlap correlation functions and the scaling properties of the violation of the
fluctuation–dissipation.

We have tried to fit our correlation functions to the functional form predicted by the droplet
model but the fits were poor. Moreover, a correlation length diverging following a power law
with the time implies, as was noted by Rieger [23], barriers diverging not asLψ (as predicted
by the droplet model with the lower boundψ > θ ' 0.2) but as logL. This latter results
impliesψ = 0, hence violating the droplet lower bound.

It is interesting to note that the experimental data could be fitted to the droplet formula
assuming thatψ = θ [17]. However, while both the results of numerical simulations and the
experiments are in very good agreement with a power law fit forξ(t, T ), the numerical fit
assuming a droplet formula forξ(t, T ) [22] disagrees with the experimental fit assuming the
same hypothesis [17].

As it has been noted above, our final result for the dynamical correlation length is in a
very good agreement with the experimental result.
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We remark that the same scenario (power law dependence ofξ(t, T )and linear dependence
of 1/zwith temperature) also emerges in four and six dimensions. In the latter case it was found
thatz(T ) = 4Tc/T [14] (z = 4 at the transition is the value predicted by mean field) while in the
former onez(T ) = 5.5Tc/T [13]. Moreover, in these two dimensions the overlap correlation
function constrained to zero overlap follows a pure power law as in three dimensions.

If we send to infinity the time in our Ansatz for the overlap–overlap correlation function
we obtain a pure power decayG(x) ∝ x−α with α ' 0.5, with a small dependence ofα on
the temperature for the whole spin glass phase. We recall again that the droplet prediction is
G(x)→ q2

EA in contradiction with our numerical correlation functions (this fact was already
noted in [12]). Instead, the pure power behaviour is supported by the Gaussian approximation
using the mean-field solution [4,24].

One could argue that the simulated temperatures are not low enough and the times and
sizes not large enough in order to see the ‘true’ (droplet) behaviour of the EA model. However,
as we stressed in the introduction,L = 64 is large enough for temperatures as low asT = 0.35
and 0.5. Moreover, our large times extrapolations are very safe thanks to the measurements
having been taken over six time decades.

We have shown numerical results that contradict the droplet predictions over a wide range
of temperatures (0.35 6 T 6 0.9). In particular, we point out that our results (both for
correlation functions and for violation of FDT) at a very low temperature,T = 0.35, support
a mean-field picture.

Finally, we remark that using the PAT mean-field scaling relations for theP(q) [32] we
have obtained a very good scaling plot of the violation of fluctuation–dissipation (like in four
dimensions [28]). This provides us another strong evidence calling for a low-temperature
phase being well described by mean field [4].
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